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1. INTRODUCTION

The fundemental, practically the most important branch of the modern
mechenics of a viscous fluld or a gas, is that branch which concerns it-~
self with the study of the boundary layer. The presence of a boundary
layer accounts for the origin of the resistance and 1ift force, the
breakdown of the smooth Fflow about bodles, and other phenomens that are
associlated with the motion of a body in s real fluid. The concept of
boundary layer was cleasrly formulated by the founder of aerodynamics,

N. E. Joukowsky, in his well-known work "On the Form of Ships"l published
ag early as 1830. In his book "Theoretical Foundations of Air Nevigation,"
Joukowsky gave an account of the most Iimportant properties of the bound-
ary layer and pointed out the part played by 1t in the production of the
resistance of bodies to motion. The fundsmental differential equetions

of the motion of a fluid in a laminar boundary layer were given by Prandtl
in 1904; the first solutions of these equations date from 1907 to 1910.

As regards the turbulent boundary layer, there does not exist even to

this day any rigorous formulation of thie problem because there is mno
closed system of equations for the turbulent motion of a fluid. T

Soviet sclientists have done much toward developing a general theory
of the boundery layer, and in that branch of the theory which 1s of greatest
practical importance at the present time, namely the study of the boundary
layer at large velocities of the body in e compressed gas, the efforts of
the scientists of our country have borne fruit in the creation of a new
theory which leaves far behind all that has been done previously in this
direction. We shall herein enumerate the most important results by Soviet
scientists in the development of the theory of the boundary layer.

*"Eogranichnyi sloi." Mechanies in the U.S.S.R. over Thirty Years,
1917-1947, pp. 300-320. —
ljoukowsky, N. E.: O forme sudov. Trudy Otdeleniya fizicheskikh o

nauk Obshchestva lyubitelei estestvoznania, 1890. (See also N. E.
Joukowsky, Collected Works. Vol. II. Gostekhizdat, 1949, pp. 627—639.)
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2. LAMINAR BOUNDARY LAYER FOR CASE OF PLANE-PARALIEI. MOTION
OF INCOMPRESSIBLE FLUID

The solution of the problem of the motion of an incompressible fluid
in the stationary laminar boundary layer reduces, as is known, to the
obtaining of Integrals of a nonlinear system of partial differential
equations:

du + du -l av QEE
u ax v 8- = dx + ayz
(2.1)
Bu ov =0
Bx By

where the unknown functions _u(x,y) and v(x,y) are the velocity com-
ponents along and normal to the surface of-the body at the points of the
boundary layer, U(x) is the initially given longitudinel velocity com-
ponent on the outer boundary of the boundary layer, x and ¥y are the
coordinates along and normel to . the surface of the contour, and v = u/b
is the kinematic coefficient of viscosity. The boundary conditions of
the problem have the form '

um 0, v=0 for y=20
(2.2)

u-U(x) for y-» =

where at times there is the further requirement of saﬁisfying a glven
distribution of velocities u= uo(y) at the initial section of the
layer x = O.

The conditions of existence and uniqueness of solutions of equations
(2.1) have been considered by N. S. Piskunov (ref. 46). .

The question of an effective method for solving eguations (2.1) for
an srbitrary given function U(x) has not yet been answered. The existing
exact solutions of the system of equations (2.1) for boundary conditions
{eq. (2.2)) refer only to certain special classes of functions U(x) as,
for example, a linear function, & monomial to some power, certain very
simple exponential combinations, and so forth. o

The application of purely numerical devices is not of great use be-
cause what is of fundamental importance is the possibility of taking into
sccount the effect of the form of the pressure distribution »n the motion
in the boundsry layer and not the accurate determination of the unknown
velocity components in a given special case.. This 1s why from about 1921
extensive uge was made of approximate methods for computing the laminar
boundary layer that were based on the application of the general integrsl
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theorems of the mechanlcs of a fluid, especially the momentum theorem.
The methods of Kérmén and Pohlhausen are primerily methods belonging to . -
this class.

By applying the momentum theorem to an element of the boundary
layer, bound by the normal sections of the lsyer st the points x and i
X + dx and the outer boundary of the layer y = 5(x), where the function .
S(X) is conventionally assumed finite even though actually the effect of .
the viscosity extends asymptotically to infinity, there may be obtained -
the slmple Integral condition T

a**  u 3¢ ¥y T
Tt (@ %) = - (2.3)

where the prime denotes differentiation with respect to x. (This equa-~

tion may also be derived strictly from equations (2 l) by employing the

accurate boundary conditions (eq. (2.2}). The two conventionasl boundary-

layer thicknesses &%(x) and &%*(x) are defined by the integrals . o

6*=f (l-ﬁ)dy
0

%% u u

3 :=J; U(l-U)d

denoted, respectively, as the displacement thickness and loss of momentum L
thickness, while the magnitude T defined by the equation

du
T u(ay):y'—o

represents the frictional stress on the surface of the body; the symbols
& and <« in the upper limit of the integral denote the possibility of —_
employing either the theory of the boundary layer of finite thickness or

the asymptotic theory.

(2.4)

Suppose we are given, in a boundary-layer section, the distribution-
of the velocities expressed in the form of a polynomial of the fourth el _
degree with respect to the nondimensionel coordinate 1 = y/Sc with )
coefficients which are functions of x. Then, by satisfying the B, -

conditions

2 \
u=O,%-%=—UUT for y=20
Y (2.5)
) )
uaU,%sO,%ao for y= 8
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the polynomisl epproximating the velocity distribution mesy be given the
form

F=o0(n) = 2n - 20° + 1* + £ a1 - )3 (2.6)

where =

12
A : (2.7)

This magnitude, which is a function of x, plays the part of a parameter
of the group of curves (eq. (2.6)) determining the form of the velocity
profiles in the sections of the boundary layer and '1s, therefore, often
termed the form persmeter.

The momentum equation (2.3) may be expressed in the form of an
equation for the determination of A as a function of  x:

aa U!
D0 g0) + k) (2.8)
where we must put (ref. 35)
- (25¥* + g¥)\
g()&) = dH.)H(-
At H** ] _
oy e 2T
k =
aEt* 1
Mo vz B

with the notation . _

5% L e s** 2
H*=—S-=f (1 - 9)an, H = —5— J; o(1 - @)dn
0

- (2.9)
bq = —ij = dj
G (dn)mo

B =0

For the given form (eq. (2.6)) of the function ¢(n,\) the magnitudes
(egs. (2.9)) are functions of the parameter A, end equation (2.8) is &
nonlinesr ordinary differential equation of the second order for the
determination of Xk as a function of x. By solving this equation for
the initisal condition x = 0, A= )0, where A9 1is determined from the

ocene
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condition that the right-hand side of equation (2.8) is finite at the
critical point x = O, we obtain A(x), and hence, by equation (2.7),
8(x) also. Then there is no difficulty in computing the magnitudes
8%, %%, and T, whereby the problem is solved.

The gbscissa of the point of separation is determined from the

condition
>)
T = W3y/ymo = ©

This briefly is the Pohlhausen method for spproximately solving
the equations of the laminar boundary layer.

Notwithstanding the roughness and small Jjustification of the assump-
tions, this method, as numerous computations have shown, has proven
itself entirely satisfactory in the region of negative and small positive
longitudinal pressure gradients in the boundary lsyer, but entirely un-
suitgble in the afterpaert of the layer in the presence of a pressure
rise sufficiently steep to be sccompanied by separation of the boundary
layer from the surface of the airfoil. 1In addition to this deficiency
in principle, the method ceased to be of service, also from the point of
view of practical application, since for solving the fundamental non-
linear differential equation (2.8), It required the use of complicated
graphical or enalytical computing devices. -

A whole series of Soviet investigations may be cited that were con-
cerned with the simplification of the practical application of the agbove .
method. Thus, A. P. Melnikov (ref. 41} worked out a method for the
numerical integration of the fundsmental equation instead of its graph-
ical solution. K. K. Fedysevskii (ref. 54) showed the possibility of
the approximate linearization of this equation and the consequent re-
duction of the solution for simple quadratures. A. A. Kosmodemysnskiil
(ref. 19) substituted for the spproximating polynomial (eq. (1.6)) the
product of a polynomial of the second degree by a trigonometric function
and applied the method of successive spproximations to solve the differ-
ential equation thus obtailned.

A. N. Alexandrov (ref. 2)[NACA note: Ref. 2 in turn refers to
NACA Rep. 527, "Air Flow in a Separating Laminer Boundary Layer" by G. B.
Schubauer, 1935.] worked out a numerical method for integrating egquation
(2.8), maintaining the velocity profile (eq. (2.6}) in the convergent
part of the layer, but for the diffuser part constructing a new polynomial
satisfying the boundary conditions obtained from equation (2.5) by adding

a new exact condition dsu/'dy5 = Q for y= O and dropping the old

condition dzu/dyz = Q0 for y= 8. This device gave good agreement of
the computation with experiment for the case of the flow asbout an
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elliptical cylinder at different angles of attack, whereass the old method
led to & result which contradicted experimental findings, namely the
absence of separation in the after reglon of an elliptic cylinder with
ratio of axes 2.96 to 1 and zero angle of attsack.

The method of Alexandrov does not, however, rest on a sufficiently
well-founded theoretical basis and possesses little accuracy, being,
moreover, extremely complicatbted computationally, the method was not able
to satisfy the increasing demands for a suitable computation of the
boundary layer. In the early part of 1941 there appeared in the U.S.S.R.
new, very much more accurate methods based on simple theoretical consid-
erations and, in addition, very suitsble for practical application.

L. G. Loitsianskii (ref. 35) introduced the following two functions
of the form parameter (A):

£(A) = AEYE, P(A) = 2H™([by - A(2H™* + H*)] (2.10)

The functions g(A\) and k(\) entering equation (2.8) are expressed in
terms of them as follows:

F(A b @

500 = Bz 100 - ) :

ax ax )

Equation (2.8) can then be reduced to the form

af u! g"
S = 2.1
22 i F(f) + T T ( l)

that is, to a differential equation determining f as a Tunction of x
if the system of equations (2.10) is regerded a8 a parsmetric relation
between F and f through the parameter A. The paremeter A is thus
excluded from consideration and replaced by a new form parameter £,
according to equations (2.10) and (2.9):
U!a';'r*z
fow —— (2.12)

The form parameter f Thas the principal advantage as compared with the
parameter A because it does not contaln the conventional nonphysical
magnitude B and is equally applicable to the theory of the layer orl
finite thickness as well as to the more strict asymptotic theory. As
will be explained below, this form parameter has in addition a number of

other advantages.

~8E6¢
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The problem is thus reduced to that of determining once and for all
the functionsl relations

F = (1), A

H = —;—I‘:;Es -g—%u H(f)

. o > (2.13)
t == e

after which, by solving equation (2.11), it is possible to find succes-
sively #£(x), then by equation Ez.lz) to find &¢(x), by the third part
of equations (2.13) to find T,(x), and finally, if required, by the

second part of equation (2.13) to find &%*(x). All these magnitudes are
encountered in the study of the flow gbout bodies and their resistance.

To establish equation (2. 13), it is possible, for example, to make
use of the following one-paremeter spproximation of the velocity profiles
in the sections of the boundary layer (ref. 35}:

B=1+a(- "+ e - n)™ & ag(n - )™ (2.14)

where the coefflcients a3, ap, and az are determined from the boundary
conditions on the surface of the cylindrical bhody: T

2 v N3 -
u=o,a—‘21=-UU—\,-,§—u-=o for y= 0 (2.15)
dy 3>

and the exponent n, characterizing the degree of contact of the curve
of equation (2.14) with the straight line wu = U on the outer boundary
of the layer, is considered as a function of the parameter A; that is,
in contrast to the o0ld methods, it changes in passing from the forward
part of the layer to the rear part. To determine the relation between
n and A, use was made of a class of exact solutions of the equations
of the boundary layer for the case of & .prescribed velocity of the ex-

ternal flow in the form of a monomial U= cx®. With a high degree of
approximation, it was possible to use the simple linear relation

n= 4 + 0.15\, which gives good agreement of the magnitude of the non-
dimensional friction coefficient £ computed by the present method, and,
from the above-mentioned class of exact solutions, for different ex-
ponents of degree m corresponding to different flows of a fluid in con~
verging and dlverging channels. LI
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The same ides was more consistently carried out in the cooperative
work of N. E. Kochin and L. G. Loitsianskii (ref. 21). Instead of the
family of curves of equation (2.14), they made use of tables of values
of the velocity u(x,y) that were computed with great accuracy for the
class of problems U = cx@.

A. M. Basin (ref. 3) proposed employing the family of velocity pro;
files for the same purpose in place of equation (2.14)

I—L}a E_+%(1- sin-zzc—n):] sin%n

satisfying at the point of separation all the conditions of equation
(2.15) and at the anterior critical point the boundary conditions of

equation (2.5).

An ingenious solution of the same problem was given by E. E.
Solodkin who showed that it was possible in equation_(z.lé) to choose a
linear relation between n and A to satlsfy approximately, at the
same time, both the equation of momentum and the equation of energy. It
is then no longer necessary to use a class of exact solutions. According
to Solodkin, the relation n= 4 + 0.27 A holds. -

All previous examples glve approximate the quantitative results for
equation (2.13). Omitting in our present review the tables of these
functions and the graphs showing thelr variation, we remark only that
the function F(f) deviates little from the simple linear dependence

F(f) = a -~ bf (2.16)

where the constants a and b have definite initially computed values
fluctuating within certain limits depending on the device used for deter-
mining the approximating velocity profiles in the sections of the bound-
ary layer. It is possible, for example, to assume, on the average, the
values a= 0.45 and b = 5.7 leading to a deviation of F(f) from the
straight line of equation (2 16) by only a few percent. Because of the
equality equation (2.8), equation (2.3) may be integrated in quadratures
and the sclution has the form .

- Eg_ uP-I(g)az (2.17)
U
0

If desired, it is possible to take into account the deviation of
the function F(f) from the straight line of equation {2.16) and to intro-
duce a correction in the solution of equation (2.17) but, as computations
show, there is practically no need for this. From equation (2.17) there
are readily obtailned f(x), 5%%(x), and so forth. The condition of

Se6¢e
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seperation will be £ = f; = constant, where this constant likewlse has

different values depending on the spproximation used; there may be
assumed, for example, fg = - 0.085 or other values of fg close to it.

To compute T, and 5%, 1t is necessary to have recourse to tebles for
t(f) and EH(f) given in the previously cited references.

The one-parameter method described previously is widely spplied at
the present time for computing the flow of wing profiles and other cylin-
drical bodies in a two-dimensional flow. The further increase in accu-
racy of the method by passing to a large number of parameters and using
the equation of energy (L. S. Leibenzon, ref. 27, and a number of other
authors) is assoclated with extreme complication, and evidently is not
dictated by necessity, since the use of the single-parsmeter method agl-
ready gives sufficiently good accuracy for smooth wing profiles. )

3. TURBULENT BOUNDARY LAYER IN PLANE-PARALLEI. MOTION
OF INCOMPRESSIBLE FLUID

Depending on the shapé of the cylindrical body in the flow, the
condition of its surface, and also the structure of the spproach flow,
the laminar boundary layer turns into a turbulent boundary layer over s
certain small transitional region generally teken to be a point called
the transition point. To compute the resistance of the wing and to deter-
mine the character of the flow gbout it and also, of particular impor-
tance, to estimate correctly the maximum 1ift force of the wing, it is
essential to be able to predict the position of the tramsition point. .
Much had been done in this direction even before the start of the war by
Soviet aerodynamicists. Especially to be noted are the numerous experi-
mental investigations serving as the basis for devising empirical methods
for determining the position of the transition point. Thus, E. M. Minskii
(ref. 43) investigated the effect of the turbulence of the approach flow
and of the longitudinel pressure drop on the transition point on the
upper surface of a wing. _ oo

From the curves presented in the work of Minskii, it may be seen
very clearly how the transition point is displaced upstream of the flow _
with increased turbulence of the flow and also with increase in the angle
of attack of the wing. Similar tests were conducted by Minskii for the
circular cylinder. On the basis of his investigations and numerous tests
of other authors, Minskii proposed a generalized empirical diagram from
which it is possible to determine aspproximstely the position of the tran-
sition point being given certain averaged characteristics of the test
conditions.
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Soviet sclentists have worked out new experimental devices for deter-
mining the position of the transition point under laboyastory and natural
conditions. N. N. Fomins and E. K. Buchinskaya (ref. 62) have conducted
an extensive experimentsl investigation of the boundary layer on a plate,
a wing, and a body of revolution with the aid of total-pressure micro-
tubes. The velocity profiles obtained by them permit estimating the
position of the transition point. Simllar measurements on the surface
of biangular profiles were conducted by I. L. Povkh (ref. 47). The
investigations carried out in the last 10 years by P. P. Krasilshchikov,
K. K. Fedysevskii, and others have considerably increased our under-
standing of the part played by transition phenomena in_the development
of the interaction force between the body and the fluid (refs. 22, 55,

and 60).

The effect of the above-mentioned factors on the heat transfer of
bodies in a fluid flow was investigated by a number of authors in the
aerodynamics and thermal physics laboratories of the Léningrad Poly-
technical Institute (L. G. Loitsianskii, P. I. Tretyakov, V. A. Shvab;
refs. 40, 68, and 70). On the basis of these investigations concerned
mainly with the intensification of the processes of heat exhange I1n
steam bollers, an original method was proposed for determining the tur-
bulence of g fluid based on the measurement of the heat-given off by a
calibrated body, & sphere, depending on the displacement of the line of
transition (thermal scale of turbulence).

In 1944, an extremely simple seml-empirical theory of the transition
of a laminar layer into the turbulent layer was proposed by A. A. Dorod-
nitsyn and L. G. Loitelanskii (ref. 10)}. On the basis of the consider-
ation that the principal reason for the transition of the laminar layer
to the turbulent layer is the occurrence of premature Instantaneous
local separations of the laminer boundary layer ln the reglon located
farther upstream than the point of stationary-separation arising in the
absence of externael disturbances, the authors proposed the following
simple formula for determining the gbscissa of the transition point:

(3_12{_'_ . r) <U5:**)2 - £ (3.1)
U

where 7T 1s a certain constant, characteristic of the given flow, and
is determined by the equation

Y= fs<-U—5“n)2 (3.2)

U'=0

vhere fg4 1s the separation value of the form parameter that is given
by fg = -0.085. The expression 1ln parentheses on the right side of
equation (3.2) is computed, once and for =all, for a given aerodynamic

aCAC
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wind tunnel from tests on a plate or other body for which the point of
transition coincides with the point of minimum pressure. This very
approximate semi-empirical theory was sufficlently well confirmed by
numerous Soviet and forelgn tests.

The more accurate theory, presented at the end of the paper cited
above, shows that, in fact, the comstant ¥y 1is a function of the non-
dimensional velocity at the transition point. There is also given an
explicit relation between the magnitude Y and the intensity and scale
of the turbulence. It is important to note that the previously mentioned
semi-empirical theory can be easily generslized to the case of motion of
large veloclties where 1t is no longer permissible to neglect the effect
of the compressibility of the air.

Let us now turn to the question of the turbulent boundary layer on
a wing profile. The gbsence of a retional theory of the turbulent
boundary leyer has not up to the present permitted devising a theoret-
ically Jjustified method for its computation. The first solutions of
this problem for the case of the wing profile were based on the utili-
zation in the boundary-layer sections of the velocity distributions
corresponding to a known power law, for exsmple, the 1/7 power law, de-
rived for the steady motion in a pipe. As is known, power laws have the
fundamental defect that laws of such type are applicsble only within a
certain range of Reynolds numbers.

The first investigstor to overcome thlis deficiency was G. A. Gurz-
hienko (ref. 6) who applied a logarithmic velocity distribution not de-
pending on the Reynolds number to the computation of the turbulent
boundary layer. By making use of a logarithmic formula for the veloc-
ities in the sections of the boundary layer, Gurzhienko reduced the
problem to a certain relatively complicated differentiasl equation and
gave a method of integrating it by successive sgpproximstions. From 1ts
very nature, this method cannot take into account the effect of a longl-
tudinal pressure gradient on the shape of the velocity profile and it is
therefore not applicsble to those cases where such a gradient is of

importance.

The first attempt to take into account the effect of the longi-
tudinal pressure gradient on the veloclity distribution in e turbulent
boundary layer is that of K. K. Fedyaevskii (ref. 57) who presented a
new theory of the turbulent boundary lasyer based on the application of
the idea of "mixing length".

The proposed law of variation of the "mixing length" with the dis-
tance from the wall is the same for the boundaery layer as for the pipe.
By approximating the distribution of the friction stress in a cross
section of the layer by s method snalogous to the previously mentioned
device in laminar motion, Fedysevskii established the form of the one-
perameter family of velocity profiles in the sections of the layer,
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choosing for the form parameter a magnitude equal to the ratio of the
longitudinel pressure drop over a length equivalent to the thickness of
the boundary layer to the friction stress at a given point on the sur-
face of the wing. By generallzing the idea of a laminar sublayer for
the case of the presence of a longitudinsl pressure drop and spplying

the formuls for the velocity to the boundary of the sublayer, Fedyaevskii

obtained a formula for the reslstance after which the equatlons of the
problem formed a closed system and the solufion was carried to the end.

The method of Fedysevskil was subsequently developed in the direc-
tion of greater convenience of computation by L. E. Kalikhman (ref. 12),
who also carried out s large number of computations of the boundsry
layer for dlfferent wing profiles and showed the effect of the shape of
the profile, the lift coefficient, and other factors on the flow gbout -

the wing.

A somevwhat different method was followed by A. P. Melnikov (refs.
41 and 42). Employing the semi-empirical theory of the turbulent motion
between two parallel walls in which the "mixing length" is expressed
through the derivaetives of the longitudinal velocitiles along the direc-
tion normal to the surface, Melnikov applied this theory to the boundary
. layer and obtalned comparatively simple formulas for the one-parameter
family of wvelocity profiles with the same form parameter which figures
in the method of Fedyaevskii. Later Melnikov simplified the method, at
the same time, made it more accurate, and confirmed its practical appli-
cability by a number of computations.

In the theory of turbulent boundary layer, there isg still. a third
line of attack considerably more simple from the point of view of its
applications, which, in contrast to the above-mentioned semi-empirical
methods, might be denoted as empiricsl. This approach has recently re-
ceived the greatest development. : =

The underlying basis of all work using the emplirical approach is
the employment of the momentum equation, which in the case of the turbu-
lent boundary layer mainteins the same form (eq. (2.3)) as in the case
of the leminar layer. The equatlion contains essentially three unknown
magnitudes &%, 5%, and Ty+ In the semi-empirical theories, having

chosen a certain one-pasrameter family of velocity proflles in the sec-
tions of the layer, the two unknowns &% and &%* are expressed in
terms of oné unknowr, the thickness of the boundary layer & (see eq.
(2.4)); after this there remains only to establish a formula for the
resistance connecting 7T,; and 8. For this purpose there is employed

the concept of laminar sublayer, introduced, Sﬁrictly syéaking, only for
the case of the sbsence of _a longitudinal pressure gradient.

Sese
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In the investigation using the empirical approach, the family of
velocity profiles in the sections of the boundsry layer remains undeter-
mined, while the unknown magnitudes &%, 3¥%¥, and Ty Or their combi-
nations, are connected by approximate relations obtained from tests or
from certain assumptions of an intultive character. Thus, for example,
two experimental curves are employed connecting the nondimensionsl

coefficient of resistance
1
¢ = W (us\&
puz \ 7

and the thickness ratio &%/8%¥ = H with the form parameter

1
U's ™ [us*\Z
e - T -~

Instead of using experimental curves comnecting the resistance
coefficient and the magnitude H with a certain form parameter, curves
which incidentally are drawn through a very small number of test points
and refer to the region of small Reynolds numbers, it is possible, on
the basis of certain general asssumptions, to construct a method suitable
for computations; the accuracy of this method is found to be entirely
sufficient in a number of cases. Thus L. G. Loitsianskii (ref. 38)
introduced a form parsmeter T and a reduced resistance coefficient ¢
according to the formulas ’ _ . —

Ule¥* T
r=23— G, = ~5 A(r=)

where G(R**) 1s a certain function of the number R** = Us**/v deter-
mined from tests on plates. In this case, equation (2.3) may be trans-
formed to the form

1 34
%XE = % F(r; R*) 4+ % T (3.3)

which is entirely analogous to equation (2.11) for the determination of
the form paremeter of the theory of lsminar boundery layer. The function
F(T; R™) entering above and given by

F(rs B*¥) = (1 +n)t - [3 +m+ (1 + m)E[T" (5.4)

is a weak function of R™* because the number R** enters into it
chiefly through the msgnitude m, which is equal to

d 1n G(R®¥) _ R¥¥g! g**)
d In R*® G(R*¥)

m =
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Making the simple assumption of similarity of the changes of t
and H as a function of T in the turbulent and lamimar (m = 1) bound-
ary layers easily makes the problem completely determinate, and the
functions F(r), ¢(I'), and E(r'), which are the same for different cases
of flow, can be tabulated. The function G(R**) may, however, evidently
be well approximated by the empirical formula - '

I._I

G(R¥*¥) = 153.2R%* 6

whence it follows that m = 1/6. The function F(I)} is as readily
linearized as in the case of the laminar boundsry layer. From equation
(3.3), which becomes linear, the magnitude T is determined by simple
quadrature. Computations show satisfactory agreement with test results.
The method may be applied.also for determining the sbscissa of the point
of separation, that is, the value x = Xg for which Q(xs) = 0.

If the turbulent boundary layer is considered for the case of ;
smooth flow without separation about a wing (small relative thicknesses
and small 1lift coefficient), it is sufficlent in equation (3.4) to put
simply :

1

m=Z, (=1, B= 1.4

after which equation (3.2)[NACA note: Eq. (3.3).] is easily integrated.
For this very simple and also important case from the point of view of
rractical spplication a somewhat different, but likewise simple, equation,
convenient for solution, was given by L. E. Kalikhman (ref. 15).

To the empirical methods based, as in the method above, on the mo-
mentum equation there may be added the method of computing the boundary
layer worked out by L. E. Kalikhman (ref. 14).

In the U.S.S.R., as is seen from the previous review, a whole
serles of original methods of computing the turbulent bolUndary layer has
been developed. The further development of this important field of
hydrodynamics requires experimental work on turbulent motion in general
and the turbulent boundsry layer-in particular. - ’

4. CERTAIN SPECTIAL. PROBLEMS OF THEORY OF BOUNDARY
LAYER IN INCOMPRESSIBLE FLUID

Parallel to the laminar and turbulent internal friction in the
boundary layer, the processes of heat transfer occur which are associated
with a similar mechanism and which depend on the distribution of the
temperatures and veloclities in the layer. Investigationg slong these
lines have been conducted principally in U.S.S.R. -

Seee
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, G. N. Kruzhilin (ref. 23), making use of the concept introduced by
him of a thermal boundary layer of finite thickness, established a

simple integral relation for the heat transfer in & laminar layer. Apply-
ing a method analogous to that earlier described for the computation of
the laminer layer but in a more simplified form, Kruzhilin reduced the
problem to quadrstures and obtained for N = al/X, R= Vol/¥, and

P = v/a the following general formuls which interconnects them:

11

- 2 2 A
N = 26 PR (2.1)

where F(X), a function of the nondimensional coordinate X = x/1, 1
being an erbitrary scale dimension of the body, is a quadrature depend-
ing on the shape of the body; the magnitudes «, N\, a, and Vv are
respectively, equal to the coefficients of heat transfer, the heat con-
ductivity, the thermal diffusivity, and the kinematic viscosity of the
fluid. In the case of the flow along a plate, equation (4.1) assumes
the form 11

N = 0.870P°R2 (¢.2)

The coefficient entering it differs little from that of the accurate
solution. Equations (4.1) and (4.2) are derived on the assumption that
the thermal boundary layer is thinner than the veloclty boundary layer,
that is, P 1s greater than 1. The equations retain their form, however,
also for P 1less than 1 but greater than 1/2. In his further studies,
Kruzhilin gpplied equation (4.1) to the forward part of a circular cyl-
inder (ref. 25) and made a comparison with test data obtained by himself
and V. A. Shvab (ref. 26). The results of the comparison were found to
be entirely satisfactory. In one of his subsequent papers (ref. 24),
Kruzhilin studied the effect of a longitudinal pressure gradient on the
form of the velocity profile in the boundary layer and alsc the genera-
tion of heat arising from the dissipation of energy due to the internal
friction in the rapldly moving fluid in the boundary layer. It should
be remarked that at the time of the appearance of Kruzhilin's papers
there existed in world literature individual theoretical investigations
of the heat transfer of bodies in a forced flow but only for the partic-
ular cases of given distribution of the velocities in the outside flow
and of the temperatures over the surface of the body and without account
taken of the generation of heat due to the diseipation of mechanical = .

energy.

In the U.S.S8.R., the first investigations were carried aut in the
field of heat transfer in a turbulent boundsry layer. V. A. Shveb, in
a theoretical paper (ref. 69) dating from 1936, first gave a solution of
the problem of the heat transfer under the conditions of the external
problem in the presence of a turbulent boundary layer in an incompress-
ible fluid. In this paper Shvab makes use of a well-known analogy
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between the turbulent transport of momentum and heat and, assuming mono-
mials with various powers for the velocity and _temperature distribution,
he gave formulas for the heat transfer both for a plate &nd for a cyl-
indrical body and body of revolution. For P equal to 1, Shvab obtained

an equation connecting the numbers N end R in the form
1l+n

. Rl+3n -

where n 1is the exponent in the assumed distribution of:%he velocltles
in the sections of the boundary layer. With the usual power law n = 1/7

there 1s obtained N ~ RQ -8 in contrast to the previously mentioned law

N ~ R9S for the laminar boundary layer.

In a second generalizing paper appearing in 1937 (ref.68), Shvab
developed the 1deas of the preceding paper, showing how the effect of
the point of transition is to be taken into account and comparing the
results of the computations with experimental data obtained by him, to-
gether with other coworkers, in the aerodynamics laboratory of the
Leningrad Polytechnical Institute.

K. K. Fedyaevskii (ref. 56) generalized his method of computing the
turbulent boundary layer to the case of a thermal boundary layer. Making
ugse of a polynomial representation of the distributior of the heat trans-
port in a sectlon of the layer, he cbtained the distribution of the tem-
peratures over the cross sectlon and then a new integral formula of the
dependence of the local value of N on P and R (the latter enters
in nonexplicit form through the coefficient of resistance). Comparison
with the results of the tests of A. 8. Chashchikhin showed good agree-

ment of theory with experiment.

Other studies by Soviet investigators in the field of;ﬁorced hest
transfer of bodles in the boundary layer will be discussed 71n the fol-
lowing section devoted to the problems of motion of a gas at large
velocities, a case which is inseparably connected with heat transfer.

There should be mentloned the investigations of Soviet scientists
in the field of free convective heat exchange and also on turbulent Jet
theory in which so much progress has been made principally by the work
of G. N. Abramovich (ref. 1). In these investigations, preactical methods
gre given for the computation of turbulent Jets both with and without

heat transfer.

Together with turbulent Jets, there belorngs to the number of prob-
lems of the so-called "theory of free turbulence" also the problem of
the turbulent motion of & fluid in the aerodynamic wake behind a body,
that is, in the region of flow formed by the boundary layer coming from
the body. We may mention the interesting experimental investigations

598 |
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of G. I. Petrov and R. I. Shteinberg (ref. 45) who were concerned with
the question of the effect of the shape of the body on the frequency of
the pulsations, of pressure or velocity in the wake behind the body, and
the work of B. Y. Trubchikov (ref. 49) on the measurement of the temper-
atures in the wake behind a heated body. These investigations led
Trubchikov to establishing a method of measuring the turbulence in wind
tunnels.

In considering the flow about the fuselage of an airplane, the
interference of the fuselage with the wing, the flow near the tips of a
wing of finite span, and alsoc in studying the phenomena of slip and the
flow gbout a back-swept wing, it is of great importance at the present
time to study the three-dimensional flows of a liquid or gas in the
boundary layer. The problem of the three-dimensional boundary layer in
general presents great theoretical difficulties; the simplest case to
solve is that of the flow with axisl symmetry.

In this field, practical application has been made in the U.S.S5.R.
of the method for computing the frictional resistance of bodies of revo-
lution worked out by K. K. Fedyaevskii (ref. 52), based on the applica-
tion of power laws of velocity and resistance with variable exponents.
The first application of the logrithmic veloclty profile to the compu-
tation of the boundary layer and the resistance of bodies of revolution
for the case of axially symmetric flow sbout them was made by G. A.
Gurzhienko (ref. 6).

A1l new methods of computation of plane laminsr flow or of the tur-
bulent boundary layer henceforth sutomatically were carried over to the
case of axlially symmetric flow about bodies of revolution. The pre-
sentation of these methods may be found in the previously cited refer-
ences. An approximate method of computing the laminar boundary layer
analogous to that described in section 2 is given in a separate paper by
L. G. Loitsianskii (ref. 31).

Turning to a consideration of the more difficult problem of the
computation of a three~dimensional boundary layer, we may note first
that L. E. Kalikhman (ref. 16) gave the derivation of the fundamental
integral relations which can serve for the development of approximate
methods of solution of the problem analogous to those applied in the two-
dimensional case. '

In the period from 1936 to 1938, Loitsianskii published a number of
pepers in which, by employing various approximate devices, he was able
to solve the followlng three-dimensionsl problems:

(1) The laminar and turbulent motion of a fluid in a boundary layer
near the line of intersection of two mutually perpendicular planes
(there was applied the method of the finite layer (ref. 29) and
the method of the asymptotic layer (ref. 33))
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(2) The analogous problem for planes inclined to each other by a
certain angle (ref. 38)

(3) The laminar boundary layer along the line of intersection of
two surfaces (ref. 30)

(4) The laminer boundary leyer near the lateral edge of a plate in
an axlal flow (ref. 37)

In these papers new phenomens were revealed by mathematical compu-
tation, thé most interesting of which are: the thickening of the bound-
ary layers and the decreasing of the friction in the region of Juncture
of the planes or surfaces and, coversely, the thinning of the boundary
layer and increase in the friction as the lateral edge of the plate was
approached. Consequently, there appears the phenomenon of the premature,
as compared with the two-dimensional layer, Separation of the boundary
layer near the line of intersection of the surfaces. The latter phenom-
enon, usually sggravated further by the harmful interference of the’
external potential flows, which are as yet not subject fo computation, . _
are actually observed in the region where the wing and fuselage are . o
Jjoined and in other flows where there is an intersecticn of surfaces in
the diffuser region of the layer.

CCRC

Very recently V. V. Struminskii (ref. 48) gave & theory of the
three-dimensional boundary layer on a cylindrical wing of infinite span
moving with constant angle of slip. For this purpose hé applied the
theory of the boundary layer with finite thickness.

We now proceed to consider the investigations on the effect of the
roughness of the surface on the boundary layer. The effect of surface
roughness on the resistance of a body is determined principally by the
ratio of the mean height of the roughness protuberance to the thickness
of the laminar sublayer. The semi-empiricel theory of the turbulent
boundary layer near a rough surface was worked out by the combined efforts
of several Soviet specialists. Particulasrly to be mentioned are a num-
ber of systematic studies conducted by K. K. Fedysevskil and his coworker,
N. N. Fomina. Fedyaevskii (ref. 53) in his early work, dating from 1938,
provided the answer to two fundamental questions of interest to the design-
ing comstructer: what is the '"permissible" roughness which does not
appreciasbly increase the resistance of a wing, and what is the effect of
a glven over-all roughness on the resistance of a wing. Later on, carry-
ing out tests on the resistance of an individusl schematized protuberance,
Fedyaevskii and Fomina (ref. 61) sharpened the question of the possibility
of applying the hypothesis of plane flow to' the roughness protuberances.

By introducing the notion of the equivalent height of a roughness pro-
tuberesnce, the authors gave a teble of conventional heights equivalent to
various wing and fuselasge surface roughnesses_that are encountered in
practice. A similar investigation on the roughness of a ship's hull was ,
conducted by I. G. Khanovich (ref. 67). He is also to be credited with
& method for computing the boundary layer on & rough surface in the

presence of a longitudinal pressure drop. -
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An analysis of the parameters determining the resistance of a rough
surface and also the basis for the derivation of the fundamental formulsas
?f the velocity distribution were given in a note by L. G. Loitsianskii.

ref. 34).

The results of the investigations of our aerodynamicistis on the
problem of the effect of roughness are widely applied in airplane con-
struction practice and in work on the analysis of the effect of roughness
on the resistance of ships, on the efficiency of hydraulic turbines (39),
and so forth.

The attention of Soviet investigators was likewise drawn to special
problems on the decrease of the friction due to changes in the physical
constants of the liquid or gas by having the boundsry layer consist of
a liquid or gass differing in its properties from those of the approsach
flow and, &lso, by heating the surface of the body in the flow. An
interesting experimental investigation of the surface of a body in a
flow was made by K. K. Fedyevskii and E. L. Blokh (ref. 59) who showed
that the coefficient of resistance of a body in an air flow with the
surface of the body heated decreases as the square root of the squares
of the agbsolute temperatures of the approach flow and the surface of the
body.

Ther effect of & boundary layer consisting of a fluid with other
constants was investigated in the theoreticsal note of L. G. Loitsianskii
(ref. 32) where it was shown that of fundeamental importance for reducing
the resisgtance is a decrease of the ratio of the density of the fluid in
the boundary layer to that in the approach flow since this ratio enters
as a power close to unity, in contrast to the very small influence of
the ratio of the kinematic coefficients of viscosity.

Fedyaevskli conducted interesting experiments on the effect of the
aeration of the boundsry layer on the resistance of a body moving in
water and showed the practical possibility of decreasing the resistance.
Several general considerations on this subJect may be found in the
theoretical paper (ref. 58) of this author. S

In conclusion, we note the investigations of N. A. Zaks (ref. 11)
on the control of the boundary layer by suction or blow-off of air on
the wing. The theoretlcal basis of the possibility of obtaining a gain
in the 1ift force from the spplication of various methods of control of
the boundery layer and by adding flaps to the wing was first given by
V. V. Golubev. In his investigations on the theory of the slotted wing
(ref. 4), Golubev showed that the presence of a forward flap retards
the separation of the boundary layer toward the region of larger angles
of attack than for the wing without flap and, in connection with this
fact, he advanced several general considerations on the structursl param-
eters of the wing with flap. Later Golubev (ref. 5) occupied himself
with the theoretical investigation of other forms of mechanization, in
particular, with the suction and blow-off of the boundary layer.
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5. BOUNDARY LAYER AND RESISTANCE IN COMPRESSIBLE
GAS AT LARGE VELOCITIES

The investigation of the effect of compressibility of a gas on the
motion in the boundary layer, the resistance, and the heat transfer 1s
the newest branch of the theory of the boundary layer.

The first theoretical study in which a method was given for the
complete computation of the distribution of the velocities and tempera-
tures in a laminar boundary lasyer in a compressible gas was the work of
F. I. Frankl (ref. 63). 1In this paper, Frankl generalized the usual
method of the boundery layer of finite thickness to the case of a com-
pressible gas. In his later papers (refs. 64 to 66) dating from 1935 to
1937, Frankl solved the problem of the heat transfer and friction in the
turbulent boundary layer on a plate. The latter problem, as well as the
analogous problem of the laminar boundary layer, presented serious com-
putational difficulties but the author carried his investigation far
enough to give quantitatlive conclusions.

An extremely simple spproximate theory of the turbulent friction on
a plate in a compressible fluid flow was gilven by K. K. Fedyevskii and .
N. N. Fomina (ref. 61) who showed that if the usual quadratic distribu-
tion formule for the turbulent friction i1s assumed for The cross sections
of a compressible-flow boundary layer, the effect of compressibility on
the resistance of the plate may at first approximation be taken into
account through a change in the physical constants in the boundary layer
and reduced to the previously mentioned law of the square root of the
square of the ratio of the temperatures at the wall to those of the
approach flow.

A fundamental step forward in the solution of the problem of the
boundery layer in a compressed gaes was the investigation of A. A.
Dorodnitsyn (ref. 7) conducted by him even before the war but published
only at the beginning of 1942. In this work, Dorodnitsyn showed that at
P equal to unity, and in the sbsence of heat transfer, the system of
differential equations of motion of & gas in g laminar boundary layer
can be reduced to a form differing slightly from the equations of the
boundary layer in an incompressible gas if we pass from the coordinstes
x and y 1o the new coordinates { and 1, connected with the old
coordinates by the integral relations .= -

E = 5%6 > M=
0 0]

£ ay (5.1)

where Poo and pgg are the pressure arid density in thg gas adiebat~
ically brought to rest. ’

QCRC



3935

NACA TM 1400 _ 21

In the particular case of the plate in an axial flow, Dorodnitsyn
obtained the following equation for the resistance coefficient: )

" n_1
_ 205(0) L k-1 22 2
TR VTTE
where the magnitude o/ (O) represents a certain function, computed by

the author, of Ms equal to the ratio of the veloc1ty at infinity to
the velocity of sound at infinity, R, = pmeL/ua, = cp/cv, and n is

the exponent in the assumed law of dependence of the coefflcient of
viscosity ©n on the temperature. :

The previous transformstion (eq. (5.1)) can be successfully applied
also to the turbulent boundary layer if we make use of the usual aver-
aged equations or the momentum equation derived from them and carry over
the fundamental equations of the semi-empirical theory of turbulence to
a compressible gas. By following this method, Dorodnitsyn (rgf. 8)
obtained the equation for the -local coefficient of resistance of a plate
in the presence of a turbulent boundary layer over its entire surface

0.242 = A ’l + k ; 1 MEEn(Rxcf) + 7 ln(l + k'—-é——l Mi) + 0-15]
\‘Ef .

(5.2)

where
P o X
Hes

Ry =

I. A. Kibel (ref. 18) solved the problem of the laminar boundary layer
on a plate for P equal to unity end in the absence of heat transport
across the wall, but with the presence of radiation. At large values

of Ms of the approaching flow the plate temperature established in the

presence of radiation was found to be much less than in the sbsence of
radiation.

By employing, in a somewhat generaiized form, the method of simpli-
fying the fundamentsl equations given by Dorodnitsyn, L. E. Kalikhman
(ref. 17) solved the problem of the laminar and turbulent flow of a com-
pressible gas on a plate in the presence of heat transfer.

The investigations of the boundery layer in a compressible gas on
the wing and on & body of revolution were carried out principally in
the U.S.S.R. In the work referred to previously (ref. 8), Dorodnitsyn
considers not only these cases but, employing the transformation of
equation (5.1), also solves much more complicated problems. In the
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general case of a laminar boundary layer, he applies primarily a method
analogous to that described in section 2 of this review, while, the
turbulent boundary layer, he has recourse to the génera; devices of the .
seml-empirical theory.

To determine the coefficient of profile resistance,.a simple formuls
ig established serving as a generalization of the well-khown resistance
formula of & body in an incompressible fluid. Dorodnitsyn (ref. 9)
carried out wide computations of the resistance coefficients of wing
profiles at large velocities and brought to light specific effects of
the compressibility of the ailr on the resistance coefficients of wing
profiles of various geometric shapes for various conditione of the flow

about then.

sg6e

The comparative complexity of the method on the one_hand, and the
impossibility of its application to the solution of the problem of the
separation of the boundary layer, on the other, made 1t necessary to
generalize the method of computing the laminsr boundary layer, described
in section 2 of this review, to the case of the motion of a compressible
gas with large velocities. A. A. Dorodnitsyn and L. G. Loitsianskii
(ref. 10) showed that equation (2.3), for P equal to unity and in the
absence of heat transfer, may be brought to the form '

af v a V! -
&= () ln ——— + £ -{1n . = (5.3)

ax
1 - q (1 2)2+k-l
- d,o -

2
0
where og = V]L\ﬁio represents the nondimensional velocity at the outer

boundary of the layer, ig = JcpTgp 1s the total energy, and the form
parameter f has the form

V’S**z -
f = %
1 o
- k-1
vOO(i ab)

In the sbove equation and equation (5.3), V' denotes thg;derivative
with respect to x, while the momentum thickness loss B is deter-

mined by the formula
6% u u
° =f (- gen
0

It is of interest to remark that the structure of the. expression "
for the function F(f) in terms of {(f) and H(f)(see section 2) in B
no way differs from the corresponding expression in the case of the
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incompressible fluid. If we make the assumption that, at least for not
too large values of Mg, the functions E(f) and H(f) will be the same,
as in the case of the incompressible fluid, we may employ the tables of
functions for ((f), H(f), and F(f) computed for the incompressible
fluid. PFor a first approximstion we obtain the following generalizstion
of equation (2.17): '

‘ ] ] .
£m VP 1(1 - ag)m 1 ax (5.4)
v (l - ubim o

wvhere a and b are the same constants as in section 2 and the magni-

tude m 1is determined by the equation -

k

b
TTEtEIC

k-1

The solution of the problem has thus been reduced, as before, to a
simple quadrature. - '

L. E. Kelikhmen (ref. 13) investigated the laminar and turbulent
boundery layers on & wing in two-dimensional flow and on a body of revo-
lution with axiaelly symmetric flow for the case of the presence of heat

transfer from the surface of the body. Introducing a transformation of

coordinates representing a generalization of the transformetion of

A. A. Dorodnitsyn (eq. (5.1)), Kalikhman constructed the integral rela-
tions of the moments and energies; then assuming a polynomial distri-
bution of velocities and temperatures in the cross sections of the
boundary layer, he converted these relations into differential equations
relative to severel complexes containing the thicknesses of loss of
momentum and energy. The equations are integrated by the method of
successive approximations. In the first approximation, the solution is
represented as a simple quadrature. To solve the analogous problem for
the turbulent boundary lsyer, Kalikhman applies a semi-empirical theory
of turbulence in which he assumes a linear dependence of the mixing
length on the coordinates. The solution of the fundemental differential
equations in this case likewise lead to quadratures. At the conclusion
of the work an equation is established for the coefficient of profile
resistance serving as a generalization of the formula of Dorodnitsyn for
the case of a body in a compressible gas flow with the presencé of heat
transfer. ' ' ' :

The theory of the boundery layer occupies en lmportant place in the
Soviet manuals on hydrodynamics (ref. 20} and constitutes a subject of
special monographs (ref. 28).
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